2.6

# **Student Performance and Learning Outcome**

2.6.1 Programme and course outcomes for all Programmes offered by the institution are stated and displayed on website

**Supporting Document: Sample Course File** 

# Regent Education & Research Foundation Department of Computer Science & Engineering Course File

Course Name and Code

: Computer Organization/PCCCS302

Name of the Faculty

: Pragati Ghosh

Name of the Program

: B.Tech in Computer Science &

Engineering

**Year and Semester** 

: 2<sup>nd</sup> Year / 3<sup>rd</sup> Semester

Academic Year and Semester

: 2022-23 / Odd Semester

Prepared By,

**Faculty Name** 

: Pragati Ghosh

Designation

: Assistant Professor







# Check List of Main Course File

| SL NO | Description                                                                                                       | Status |
|-------|-------------------------------------------------------------------------------------------------------------------|--------|
| 1.    | University Syllabus (Part A)                                                                                      |        |
| 2.    | Module Wise Lesson Plan (Part B)                                                                                  |        |
| 3.    | Assignment, Question Papers of Assessment (Part C)                                                                |        |
| 4.    | Question Paper in Institute Format along with minimum 3 solved Copies (To be kept separately in General Annexure) |        |
| 5.    | Mapping Question with COs                                                                                         |        |
| 6.    | Question Bank<br>(To be kept separately in General Annexure)                                                      |        |
| 7.    | Tutorial Topics & Questions (To be kept separately in General Annexure)                                           |        |
| 8.    | Course Material / Lecture Notes (To be kept separately in General Annexure)                                       |        |

## University Syllabus (Part A)

Course Name : Computer Organization

Course Code : PCC-CS302

Credit Points : 3

#### Prerequisites:

Concept of basic components of a digital computer, Basic concept of Fundamentals & Program structures. Boolean algebra.

Basic number systems, Binary numbers, representation of signed and unsigned numbers, Binary Arithmetic as covered in Basic Computation & Principles of Computer Programming.

Boolean algebra.

#### Objectives:

- 1. To prepare students to perform the analysis and design of various digital electronic circuits.
- 2. To know how Computer Systems work & its basic principles
- 3. To know how I/O devices are being accessed and its principles etc.

#### **Course Content:**

| Unit | Content                                                                                                                                                                                                                                                                                                                                                                                    | Hrs. / Unit |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.   | Basic organization of the stored program computer and operation sequence for execution of a program. Role of operating systems and compiler/assembler. Fetch, decode and execute cycle, Concept of operator, operand, registers and storage, Instruction format. Instruction sets and addressing modes.  Commonly used number systems. Fixed and floating point representation of numbers. | 8           |
| 2.   | Overflow and underflow, Design of adders - ripple carry and carry lookahead principles.  Design of ALU.  Fixed point multiplication -Booth's algorithm.  Fixed point division - Restoring and non-restoring algorithms.  Floating point - IEEE 754 standard.                                                                                                                               | 8           |
| 3.   | Memory unit design with special emphasis on implementation of CPU-memory interfacing.  Memory organization, static and dynamic memory, memory hierarchy, associative memory.  Cache memory, Virtual memory. Data path design for read/write access.                                                                                                                                        | 10          |

|    | Design of control unit - hardwired and micro-programmed control. and Token Bucket algorithm.                                                                                    |    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4. | Introduction to instruction pipelining. Introduction to RISC architectures. RISC vs CISC architectures. I/O operations - Concept of handshaking, Polled I/O, interrupt and DMA. | 10 |

#### **Learning Resources**

#### **Text Books:**

- 1. Mano, M.M., "Computer System Architecture", PHI.
- 2. T.K.Ghosh, "Computer Organization and Architecture", McGraw Hill.
- 3. Hayes J. P., "Computer Architecture & Organisation", McGraw Hill.
- 4. Hamacher, "Computer Organisation", McGraw Hill.
- 5. Behrooz Parhami "Computer Architecture", Oxford University Press.

#### **Reference Books:**

- 1. N. senthil Kumar, M. Saravanan, S. Jeevananthan, "Microprocessors and Microcontrollers" OUP
- 2. Chaudhuri P. Pal, "Computer Organisation & Design", PHI,
- 3. P N Basu- "Computer Organization & Architecture", Vikas Pub
- 4. Rajaraman "Computer Organization & Architecture", PHI
- 5. B.Ram "Computer Organization & Architecture", Newage Publications.

#### WEB RESOURCES:

- 1. http://www.indiabix.com/computer-science/organization/
- 2. http://www.careerride.com/Computerorganization-Interview-Questions.aspx
- 3. http://www.geeksforgeeks.org/tag/co/

#### **Learning Outcomes/ Course Outcomes:**

Upon completion of this module, students will be able to:

| Course name  | со                | Description                                                                                                                                     |
|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|              | PCC-<br>CS302.CO1 | Illustrate the history of modern computers and the Von Neumann architecture.                                                                    |
|              | PCC-<br>CS302.CO2 | Demonstrate basic number systems, Binary numbers, representation of signed and unsigned numbers, Floating point representation.                 |
| Computer     | PCC-<br>CS302.CO3 | Distinguish the organization of various parts of a systemmemory hierarchy i.e. cache memory , virtual memory etc.                               |
| Organization | PCC-<br>CS302.CO4 | Understand memory and I/O operations.                                                                                                           |
|              | PCC-<br>CS302.CO5 | Classify basics of systems topics like, single-cycle (MIPS), multi-cycle (MIPS), parallel, pipelined, superscalar, and RISC/CISC architectures. |
|              | PCC-<br>CS302.CO6 | Define different control unit operations and I/O organization.                                                                                  |

# PO mapping with course outcome and PSO:

| (         | Comp | uter O | rganiz | zation | Cour | se Ou | tcom | e map | ping t | o Prog | ram 0 | utcom | е    |      |
|-----------|------|--------|--------|--------|------|-------|------|-------|--------|--------|-------|-------|------|------|
| СО        | PO1  | PO2    | PO3    | PO4    | PO5  | P06   | PO7  | PO8   | PO9    | PO10   | PO11  | PO12  | PSO2 | PSO2 |
| CO1       | 3    | 3      | 3      | 3      | 2    | -     | -    | -     | -      | -      | -     | -     | 3    | 2    |
| CO2       | 3    | 3      | 3      | 3      | 3    | -     | -    | -     | -      | -      | 1     | ~     | 3    | 2    |
| CO3       | 3    | 3      | 3      | 1      | 3    | -     | -    | -     | -      | -      | 2     | -     | 1    | 3    |
| CO4       | 3    | 2      | 3      | 3      | 2    | -     | -    | -     | -      | -      | 1     | -     | 2    | 3    |
| CO5       | 3    | 2      | 3      | 3      | -    | -     | -    | -     | -      | -      | 2     | 2     | 3    | 3    |
| CO6       | 3    | 3      | 3      | 2      | 3    | -     | -    | -     | - /    | -      | 3     | 3     | 3    | 3    |
| ttainment | 3    | 2.67   | 3      | 2.5    | 2.6  | 0     | 0    | 0     | 0      | 0      | 1.8   | 2.5   | 2.5  | 2.33 |

1: Slight (Low)

2: Moderate (Medium)

3: Substantial (High)

#### **Module Wise Lesson Plan**

| SI<br>No. | Topic name                                                                                    | Preferred<br>book | No. Of periods | Cumulative<br>no. Of<br>periods | CO<br>Aimed | Delivery<br>method |
|-----------|-----------------------------------------------------------------------------------------------|-------------------|----------------|---------------------------------|-------------|--------------------|
|           | U                                                                                             | NIT I             |                |                                 | hard that   |                    |
| 1         | Functional units of a computer and basic operational concepts                                 | T1                | 1              | 1                               | CO1         | Chalk &<br>Talk    |
| 2         | System Design – System representation, Design Process, the gate level                         | T1                | 1              | 2                               | CO1         | Chalk &<br>Talk    |
| 3         | Register Level – Register level components, programmable logic devices, register level design | T1                | 1              | 3                               | CO1         | Chalk &<br>Talk    |
| 4         | Processor – Level – Processor level components, processor level design                        | T2                | 1              | 4                               | CO1         | Chalk &<br>Talk    |
| 5         | CPU Organization – Fundamentals, additional features                                          | T2                | 1              | 5                               | CO1         | Chalk &<br>Talk    |
| 6         | Data Representation - Fixed – Point Numbers, Floating Point Numbers                           | T2                | 1              | 6                               | CO1         | Chalk &<br>Talk    |
| 7         | Addressing modes.                                                                             | T2                | 1              | 7                               | CO1         | Chalk &<br>Talk    |
| 8         | Instruction Formats, Instruction Types.                                                       | T1                | 1              | 8                               | CO1         | Chalk &<br>Talk    |
| 9         | Tutorial                                                                                      |                   | 1              | 9                               |             | Tutorial           |
|           | UN                                                                                            | II TIV            |                |                                 |             |                    |
| 10        | Fixed Point Arithmetic – Basic adders and subtractors                                         | T2                | 1              | 10                              | CO2         | Chalk & Talk       |
| 11        | High Speed Adders – Carry-lookahead adder,<br>Ripple Carry Adder.                             | T2                | 1              | 11                              | CO2         | Chalk & Talk       |
| 12        | Multiplication – 2's – complement Multiplier                                                  | T2                | 1              | 12                              | CO2         | Chalk & Talk       |

| 3 Bo        | ooth's algorithm                                                                      | T2    | 1 | 13 | CO2 | Chalk &<br>Talk |
|-------------|---------------------------------------------------------------------------------------|-------|---|----|-----|-----------------|
| 4 Re        | estoring and Non- Restoring Division algorithm                                        | T2    | 1 | 14 | CO2 | Chalk &<br>Talk |
| wi          | ith example                                                                           | T2    | 1 | 15 | CO2 | Chalk &         |
| .5 M        | lodified booth's Algorithm                                                            | 12    | - |    | 503 | Talk<br>Chalk & |
|             | oating Point Arithmetic -Basic Operations,<br>loating Point Units, Addition Algorithm | T2    | 1 | 16 | CO2 | Talk            |
| 17 FI       | loating point - IEEE 754 standard- single and                                         | T2    | 1 | 17 | CO2 | Chalk &<br>Talk |
|             | ouble precision.                                                                      |       | 1 | 18 |     | Tutorial        |
| 18 <b>T</b> | utorial                                                                               | TIII  |   |    |     |                 |
| 19 F        | Random Access Memories – Organization,                                                | T1    | 1 | 19 | CO3 | Chalk &<br>Talk |
|             | Design Serial - Access Memories – Access methods,                                     | R1    | 1 | 20 | CO3 | Chalk &<br>Talk |
|             | Organization, Magnetic surface recording                                              |       | 1 | 21 | CO3 | Chalk &         |
|             | Multilevel/Hierarchical Memories                                                      | T1    | 1 |    |     | Talk<br>Chalk & |
| 22          | Associative Memory                                                                    | T1    | 1 | 22 | CO3 | Talk            |
| 23          | Cache Memories – Main features, Organization,                                         | T2    | 1 | 23 | CO3 | Chalk &<br>Talk |
| 24          | Operation  Cache memory Mapping                                                       | T2    | 1 | 24 | CO3 | Chalk & Talk    |
| 25          | Virtual memory-address translation methods                                            | T2    | 1 | 25 | CO3 | Chalk &<br>Talk |
| 26          | Memory Allocation                                                                     | T2    | 1 | 26 | CO4 | Chalk &<br>Talk |
| 27          | Pre-emptive and Non-pre-emptive allocation                                            | T2    | 1 | 27 | CO4 | Chalk &<br>Talk |
| 28          | Page Replacement policies                                                             | T2    | 1 | 28 | CO3 | Chalk & Talk    |
| 20          |                                                                                       |       | 1 | 29 |     | Tutorial        |
| 29          | Tutorial                                                                              | IT IV |   |    |     |                 |
| 30          |                                                                                       | T1    | 1 | 30 | CO5 | Chalk & Talk    |
| 31          | Hardwired control – Design Methods                                                    | T1    | 1 | 31 | CO5 | Chalk &<br>Talk |
| 32          | Micro programmed control-micro instructions, micro program sequencing                 | T1    | 1 | 32 | CO5 | Chalk & Talk    |
| 33          |                                                                                       | T1    | 1 | 33 | CO5 | Chalk &<br>Talk |
| 34          |                                                                                       | T1    | 1 | 34 | CO5 | Chalk & Talk    |
| 35          | Communication methods – Basic Concepts, Buses, Bus Control, Interfacing, Arbitration  | T1    | 1 | 35 | CO6 | Chalk & Talk    |
| 36          |                                                                                       | T1    | 1 | 36 | CO6 | Chalk & Talk    |

| 37 | DMA – Direct Memory Access | T1 | 1 | 37 | CO6 | Chalk &<br>Talk |
|----|----------------------------|----|---|----|-----|-----------------|
| 38 | Interrupts                 | T1 | 1 | 38 | CO6 | Chalk &<br>Talk |
| 39 | Vectored interrupts        | T1 | 1 | 39 | CO6 | Chalk &<br>Talk |
| 40 | Tutorial                   |    | 1 | 40 |     | Tutorial        |

Note:- Delivery method could be chalk & talk, tutorial session, seminar, digital demonstration, assignments

# Question Papers of Assessment (Part C)

#### Assignment-

| Question<br>No. | Questions                                                                                                | BL | CO 1 | PO 4 |
|-----------------|----------------------------------------------------------------------------------------------------------|----|------|------|
| 1               | Draw and explain the flow chart for Booth's algorithm                                                    | 1  |      |      |
| 2               | Explain 1:16 De-multiplexer with suitable diagram and truth table.                                       | 2  | 2    | 2    |
| 3               | Explain the major phases of Instruction                                                                  | 1  | 4    | 2    |
| 4               | Explain Optimal Page Replacement algorithm for the given string: 371717369169371                         | 1  | 4    | 2    |
| 5               | Write a short note on Half adder and Full Adder.                                                         | 2  | 1    | 2    |
| 6               | Explain the process of subtraction using two's complement number.                                        | 2  | 1    | 4    |
| 7               | Explain the various types of output peripheral devices. State differences between Hardware and Software. | 2  | 2    | 2    |
| 8               | Explain CPU Organization.                                                                                | 2  | 3    | 4    |

## Internal Assessment-

Answer all the questions given below:

|    |     | w r            | many AND gate<br>4                                                                               | es are requ<br>b) 15                     | uired to de                               | sign a 1<br>c) 16              | 6:1 MUX?                   | d)17         |                      |
|----|-----|----------------|--------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|----------------------------|--------------|----------------------|
| 2. |     |                | late in binary :<br>101                                                                          |                                          |                                           | c) 1111                        |                            | d) 1011      |                      |
| 3. |     |                | 1 * 01010 = ?<br>100110010                                                                       | b)101000                                 | 0010                                      | c) 110                         | 011001                     | d)100001     | 100                  |
| 4. | D   | ) !            | IUX is used at _<br>Sender, Selecto                                                              | 's end<br>r b) Sei                       | and works<br>nder, Distri                 | as<br>butor                    | c) Receiver,               | Selector     | d) Receiver,         |
| 5. |     | qui            | Distributor<br>valent hexaded<br>FAFAFF                                                          | imal of (76<br>b) FF                     | 5575372) w<br>FAAA                        | vill be?<br>c) FAF             | AFA                        | d) AAFFAF    |                      |
| 6  |     | a)<br>b)<br>c) | th's Algorithm f<br>Multiplication of<br>Multiplication of<br>Division of num<br>Division of num | of numbers<br>of numbers<br>obers in sig | s in sign ma<br>s in 2's com<br>n magnitu | agnitude<br>aplimen<br>de form | torm                       |              |                      |
|    | 7.  | In I           | EEE-745 double<br>11                                                                             | precision b) 10                          | format, exp                               | oonent =                       | c) 9 bits.                 |              | d) 8                 |
|    |     | a)             | EEE-745 single p                                                                                 | b) 51                                    |                                           |                                | C) 23                      |              | d) 24                |
|    | 9.  | A [<br>a)      | DEMUX has 6 sel                                                                                  | ect lines. V<br>b) 1                     | Vhat is the                               | no. of ir                      | nput in that I<br>c) 64    | DEMUX?       | d) None of these     |
|    | 10. | Bir<br>a)      | nary representat<br>11100.101001                                                                 | ion of 20.1<br>1 b) 10                   | 5 is :<br>001.00100                       | 11                             | c) 10100.10                | 10110        | d)10100.0010011      |
|    | 11. |                | Restoring Division<br>A=A+M                                                                      | on, if Q0 = 0<br>b) A=                   | ) and Q1 =<br>A-M                         | 1, then                        | the next ste<br>c) ARS(AQ) | p will be :- | d) LS(AQ)            |
|    | 12. | AF<br>a)       | full Adder can ac<br>2                                                                           | ld 2 binary<br>b) 3                      | nos. havin                                | g bi                           | ts.<br>c) 4                |              | d) 6                 |
|    | 13. |                | w many select li<br>128                                                                          | nes does 1<br>b) 64                      | 28 : 1 MUX                                | ( has?                         | c) 6                       |              | d) 7                 |
|    | 14. | Ho<br>a)       | w many minimu<br>2                                                                               | m NAND g<br>b) 3                         | ates are re                               | quired t                       | o make a fli<br>c) 4       | oflop?       | d) 5                 |
|    | 15. |                | uld have unique                                                                                  | represent                                | ation for z                               | ero?                           |                            |              | e following notation |
|    |     | a)             | Signed magnitu                                                                                   | ude b) 2'                                | s complem                                 | ent                            | c) 1's comp                | lement       | d) None of the       |

# Question Paper in Institute Format

| GROUP           | 1 Answer any five questions                                                        |       |    | (1 * | 5 = 5) |
|-----------------|------------------------------------------------------------------------------------|-------|----|------|--------|
| Question<br>No. | Questions                                                                          | Marks | BL | со   | PO     |
| 1.a             | Find out the 2's complement of the given decimal no.: 14.                          | 1     | 1  | 2    | 4      |
| 1.b             | Rewrite in descending order – 4 Bits, 4 Terabytes, 4 Nibble, 4 Megabytes, 4 Bytes. | 1     | 1  | 3    | 2      |
| 1.c             | Write +7 in IEEE 32bit format.                                                     | 1     | 1  | 1    | 2      |
| 1.d             | How many address bits are required for a 1024* 8 memory?                           | 1     | 1  | 1    | 2      |
| 1.e             | Find out the Binary of the given Hexadecimal number –                              | 1     | 1  | 4    | 2      |
| 1.f             | A3D2E.  If a memory has 14 page-faults then calculate                              | 1     | 1  | 3    | 2      |
| 1.1             | the Hit and Miss ratio.[Given, total no. of pages = 20.]                           |       |    | 3    | 2      |
| 1g              | Which adder is known as n-bit parallel adder?                                      | 1     | 1  | 3    |        |

| GROUP 2 | Answer any four questions                                                                                                                                                                    |   |   | (4 * 5 | = 20) |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------|-------|
| 2       | Compare Parallel adder with Serial adder. What is the advantage of Carry Look-ahead adder over Ripple Carry adder?                                                                           | 5 | 4 | 1      | 2     |
| 3       | Suppose, we are given RAM chips each of size 256*4 to design a 4K*16 RAM system. How many smaller chips will be required? Find out the no. of address lines and data lines in the large RAM. | 5 | 1 | 4      | 2     |
| 4       | What is Access Time of a memory? Explain the parameters of a memory.                                                                                                                         | 5 | 1 | 2      | 2     |
| 5       | Explain Restoring Division using a suitable example.                                                                                                                                         | 5 | 2 | 3      | 4     |
| 6       | Find out the no. of page faults for the given reference string using Optimal Page Replacement algorithm — 2 3 1 3 4 2 1 6 0 7 0 1 2 3 1 1 5 0. [Given, Frame no. = 3]                        | 5 | 1 | 3      | 2     |
| 7       | What is ALU? Discuss all the units of an ALU.                                                                                                                                                | 5 | 1 | 1      | 2     |